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Speaker-Independent Phone Recognition Using 
Hidden Markov Models 

Abstract-In this paper, we extend hidden Markov modeling to 
speaker-independent phone recognition. Using multiple codebooks of 
various LPC parameters and discrete HMM’s, we obtain a speaker- 
independent phone recognition accuracy of 58.8-73.8 percent on the 
TIMIT database, depending on the type of acoustic and language 
models used. In comparison, the performance of expert spectrogram 
readers is only 69 percent without use of higher level knowledge. We 
also introduce the co-occurrence smoothing algorithm which enables 
accurate recognition even with very limited training data. Since our 
results were evaluated on a standard database, they can be used as 
benchmarks to evaluate future systems. 

I. INTRODUCTION 
T present, the most popular approach in speech rec- A ognition is statistical learning, and the most success- 

ful learning technique is hidden Markov models (HMM). 
HMM’s are capable of robust and succinct modeling of 
speech. Furthermore, efficient maximum-likelihood al- 
gorithms exist for HMM training and recognition. Hidden 
Markov models have been successfully applied to various 
constrained tasks, such as speaker-dependent recognition 
of isolated words [ 11, continuous speech 121, and phones 
131, as well as small-vocabulary speaker-independent rec- 
ognition of isolated words 141, and continuous speech [5]. 
In each case, extremely good results were achieved. In 
this study, we extend this list by applying HMM’s to 
speaker-independent phone recognition in continuous 
speech. 

There are several motivations for attempting speaker- 
independent phone recognition. Good phonetic decoding 
leads to good word decoding, and the ability to recognize 
the English phones accurately will undoubtedly provide 
the basis for an accurate word recognizer. Based on the 
success or failure of this study, we can predict whether 
large-vocabulary word recognition based on phonetic 
HMM’s is viable. Also, by evaluating our system on a 
standard database, we provide a benchmark that allows 
direct comparison against other approaches. 
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One of these approaches is the knowledge engineering 
approach. While hidden Markov learning places learning 
entirely in the training algorithm, the knowledge engi- 
neering approach attempts to explicitly program human 
knowledge about acoustic/phonetic events into the recog- 
nizer. Whereas an HMM-based search is data driven, a 
knowledge engineering search is typically heuristically 
guided. 

After years of research, many knowledge engineering 
researchers [6]-[8] are now building speaker-independent 
speech recognizers using knowledge engineering tech- 
niques. These knowledge engineering techniques inte- 
grate human knowledge about acoustics and phonetics into 
a phone recognizer, which produces a sequence or a lat- 
tice of phones from speech signals. Currently, knowledge 
engineering approaches have exhibited difficulty in inte- 
grating higher level knowledge sources with the phonetic 
decoder. This will hopefully be overcome by more accu- 
rate phonetic decoding. It is, therefore, extremely impor- 
tant to evaluate the phonetic accuracy of these systems. 
Although different results have been published, they were 
based on different tasks, databases, or languages. 

The recently developed TIMIT database 191, [lo] is 
ideal for evaluating phone recognizers. It consists of a 
total of 6300 sentences recorded from 630 speakers. Most 
of the sentences have been selected to achieve phonetic 
balance, and have been labeled at MIT. We will evaluate 
our HMM phone recognizer on this database. Our results 
can be used as a benchmark to evaluate other systems. 

We trained phonetic hidden Markov models using 2830 
TIMIT sentences from 357 speakers and tested on 160 
TIMIT sentences from 20 speakers. We used multiple 
codebooks of LPC-derived parameters as output obser- 
vations of discrete density HMM’s. Recognition was car- 
ried out by a Viterbi search that used a phone-bigram lan- 
guage model. With context-independent phone models, 
we attained a recognition rate of 64.07 percent for 39 En- 
glish phones, and with right-context-dependent phone 
models, the recognition rate improved to 73.80 percent. 
We are very encouraged by this result since expert spec- 
trogram readers at CMU are able to recognize phones 
without lexical knowledge with only a 69 percent accu- 
racy [ 1 I]. Our results also compare well to other ap- 
proaches to speaker-independent phone recognition. 

We also introduce a novel smoothing algorithm, co-oc- 
currence smoothing. Without smoothing, the HMM out- 
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put parameters may be very sparse and some probabilities 
may be zero because the corresponding codewords were 
never observed. Co-occurrence smoorhing determines the 
similarity between every pair of codewords from all 
phones, and then smooths the individual distributions ac- 
cordingly. With co-occurrence smoothing, we are able to 
obtain reasonable results with only 16 sentences of train- 
ing from two speakers. 

In this paper, we will first describe the database and the 
task used in this study. Then, we will explain our HMM 
training and recognition algorithms. Finally, we will pre- 
sent results, comparisons to other speaker-independent 
phone recognizers, and some concluding remarks. 

11. THE TIMIT DATABASE 

The TIMIT (TI-MIT) acoustic/phonetic database [9], 
[lo], was constructed to train and evaluate speaker-inde- 
pendent phone recognizers. It consists of 630 speakers, 
each saying 10 sentences, including: 

2 “sa” sentences, which are the same across all 
speakers; 

5 “sx” sentences, which were read from a list of 
450 phonetically balanced sentences selected by MIT; 

3 “si” sentences, which were randomly selected 
by TI. 

Seventy percent of the speakers are male; most speak- 
ers are white adults. 

We have been supplied with 19 sets of this database, 
where each set consists of sentences from 20 speakers, 
for a total of 380 speakers, or 3800 sentences. For our 
experiments in this study, we have designated 18 sets as 
training data (TID1-TID6, TID8-TID19) and 1 set 
(TID7) as testing data. We chose not to use the “sa” sen- 
tences in training or recognition because they introduce 
an unfair bias for certain phones in certain contexts, which 
would lead to artificially high results. This leaves 2880 
sentences from training, and 160 for testing. However, 
some of the speech data and labels were missing due to 
problems in reading the tape. Therefore, we actually used 
2830 sentences by 357 speakers for training data, and 160 
sentences by 20 speakers for test data. 

There were a total of 64 possible phonetic labels. From 
this set, we selected 48 phones to model. We removed all 
“Q” (glottal stops) from the labels. We also identified 15 
allophones, and folded them into the corresponding 
phones. Table I enumerates the list of 48 phones, along 
with examples, and the allophones folded into them. 
Among these 48 phones, there are seven groups where 
within-group confusions are not counted: {sil, cl, vcl, 
epi}, {el, 11, {en, n}, {sh, zh}, {ao, aa}, {ih, ix), {ah, 
ax}. Thus, there are effectively 39 phones that are in sep- 
arate categories. This folding was performed to conform 
to CMU/MIT standards. We found that folding closures 
together was necessary (and appropriate) for good perfor- 
mance, but folding the other categories only led to small 
improvements. 

TABLE I 
LIST OF THE $HONES USED IN OUR PHONE RECOGNITION TASK 

(butter) 

kick 
goo 

mem-ure 

- thief 
el bonk ?is 

r red sh &e 

111. THE PHONE RECOGNIZER 
A. Speech Processing 

The speech is sampled at 16 kHz, and preemphasized 
with a filter whose transfer function is 1 - 0 . 9 7 ~ ~ ’ .  Then, 
a Hamming window with a width of 20 ms is applied every 
10 ms. Fourteen LPC coefficients are computed for every 
20-ms frame using the autocorrelation method. Finally, a 
set of 12 LPC-derived cepstral coefficients are computed 
from the LPC coefficients, and these LPC cepstral coef- 
ficients are transformed to a mel-scale using a bilinear 
transform [12], [13]. 

These 12 coefficients are vector quantized into a code- 
book of 256 prototype vectors of LPC cepstral coeffi- 
cients. In order to incorporate additional speech parame- 
ters, we created two additional codebooks. One codebook 
is vector quantized from differential coeflcients. The dif- 
ferential coefficient of frame n is ’the difference between 
the coefficient of frame n + 2 and frame n - 2. This 40- 
ms difference captures the slope of the spectral envelope. 
The other codebook is vector quantized from log power 
and differential log power values. For normalization, the 
maximum log power is subtracted from each log power 
value. 

The use of multiple codebooks was first proposed by 
Gupta er al. [ 141. Multiple codebooks reduce the VQ dis- 
tortion and increase the dynamic range of the system; 
[ 141 and [ 151 contain more detailed analysis of the use of 
multiple codebooks. We will also present comparative re- 
sults using alternative methods of incorporating knowl- 
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edge, such as a composite distance metric 1161 that com- 
bines multiple feature sets in one codebook. 

B. Context-Independent HMM Training 
We first trained context-independent phonetic HMM’s. 

One model was created for each of the 48 phones. We 
tested many HMM topologies, and found the one shown 
in the bottom of Fig. 1 to be the best. Each of the 48 
phones is represented by an HMM that consists of seven 
states, twelve transitions, and three output probability 
density functions (pdf’s). Each output pdf is the joint 
probability of the three pdf ’s representing the three code- 
books. By assuming independence of the three code- 
books, the output probability can be computed as the 
product of probabilities of three codewords from the three 
codebooks. Thus, each HMM has 12 transition probabil- 
ities, each of which is tied to one of three sets of output 
pdf ’s (B-begin, M-middle, E-end) as designated on 
the transitions in Fig. 1 .  There are a total of 256 X 3 X 

3 ,  or 2304 output parameters for each HMM. These dis- 
tributions are illustrated in the upper portion of Fig. 1, 
which represents an HMM for the phone /d/. The code- 
words for cepstrum and power are sorted by power.’ It 
can be seen that the first distribution has much lower 
power and represents the transition from the closure into 
/d/. The middle distribution has higher power and shorter 
duration, representing the /d/ burst. The final distribution 
represents the transition out of /d/, and is much flatter 
than the other two distributions because of the variety of 
contexts it absorbed. Because of plentiful training data, 
this /d/ model is robust, as evidenced by the scarcity of 
zero probabilities in the output pdf ’s.  

Uniform initialization is used for the transition proba- 
bilities, i .e.,  all transitions from a state are considered 
equally likely initially. The output probabilities are ini- 
tialized from the segmented and labeled TIMIT sen- 
tences. For each codebook, a histogram for all codewords 
is accumulated and then normalized for each phone. All 
three distributions are initialized with the same normal- 
ized codebook histogram. This technique was first used 
by Schwartz et al. 131. 

Three iterations of the forward-backward algorithm 
1171 were run over all training sentences. For each train- 
ing sentence, we used the labels provided by MIT, but 
not the boundaries. Thus, the removal of glottal stops did 
not present any problems. The sequence of HMM’s cor- 
responding to the TIMIT phone labels are concatenated 
into a large sentence HMM, and a forward-backward al- 
gorithm is run on the entire sentence HMM. After each 
iteration over all the sentences, the parameters are rees- 
timated. 

Finally, the output parameters are smoothed using a 
novel smoothing technique called co-occurrence smooth- 

‘Although power was not used in the cepstrum codebook, the power 
value for each cepstral vector was carried along in the codebook generation 
process for the purpose of sorting the codewords. 

Begin 

Diff. Cep. J 
Power 

L 

Middle L 
1643 

End 

0.19 0.08 0.20 

E 

Fig. 1 .  A phonetic hidden Markov model for phone ldi. The upper portion 
displays the 9 output pdf’s, where the x-axis is the codeword index, 
sorted by power, and the y-axis is probability. The lower portion shows 
the HMM topology with transition probabilities. Transition labels B, M, 
E,  represent the beginning, middle, and ending output pdf’s, respec- 
tively. Transitions with the same label are tied to the same output pdf. 

ing. We define CP( i 1 j ), the co-occurrence probability 
of codeword i given codeword j ,  as:2 

CP(i  I j ) 
N p  N W P )  

p = l  d = l  P ( i l P , d ) . P ( j l p , d ) . P ( p ) . P ( d )  
- - 

NC N P  N D ( p )  

P ( k (  P ,  d )  - P (  j Ip, d )  * P ( P )  * P ( d )  

( 1 )  

k = l p = l  d = l  

where N P  is the number of phones, N D (  p )  is the number 
of output pdf’s in the HMM for phone p ,  N C  is the num- 
ber of codewords in the codebook, and P (  k I p ,  d ) is the 
output probability of codeword k for distribution d in 
phone model p .  With context-independent phones, N C  = 
256, N P  = 48, and N D (  p )  = 3 for all p .  Co-occurrence 
probability can be loosely defined as “when codeword j 
is observed, how often is codeword i observed in similar 
contexts. ” In our definition, “similar context” means the 

’The eo-occurrence probabilities can be more conveniently computed 
from the counts accumulated in forward-backward by a simple transfor- 
mation of the equation. 
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same output pdf. A similar smoothing technique was used 
in [18]. 

If P (  k I p ,  d ), the output probabilities, are under- 
trained, as often is the case, the distributions will be sharp 
and many zeros will be present. This will lead to poor 
results in recognition. We could use the co-occurrence 
probability ( C P )  to smooth the output pdf's ( P )  into a 
smoothed pdf ( S P ) :  

NC 

S P ( k ( p ,  d )  = c C P ( k 1 i )  P ( i l p ,  d ) .  ( 2 )  

Although SP ( k  I p ,  d ) does not suffer from sparseness, it 
may be too smooth. Therefore, a compromise can be 
reached by combining the two pdf 's: 

i =  1 

- SP(kI P ,  4 .  ( 3 )  
A, depends on c ,  the count of the distribution being 
smoothed. A larger c implies that P (  k I p ,  d ) is reliable, 
and suggests a larger A,. A, can be automatically esti- 
mated using deleted interpolation [ 191. In our implemen- 
tation, A, is estimated by running 100 iterations of deleted 
interpolation smoothing. A A, is estimated not for a par- 
ticular count, but for a range of counts. Fig. 2 shows the 
effect of smoothing on a poorly trained pdf. 

Co-occurrence smoothing is an extension of the cor- 
respondence smoothing proposed by Sugawara et al. [20]. 
Correspondence smoothing counts the frequency that two 
codewords are aligned against each other in DP matching 
between the same words. These counts are then normal- 
ized into a probabilistic mapping like CP,  and are used to 
smooth the output pdf 's. Co-occurrence smoothing is 
similar in that it measures the likelihood that two labels 
will occur in similar contexts, except it has the following 
several additional advantages: 

1) co-occurrence smoothing works on continuous 
speech and does not require segmentation; 

2 )  co-occurrence smoothing operates directly on the 
output pdf 's, and does not require DP; and 

3 )  co-occurrence smoothing is more relaxed than cor- 
respondence smoothing. Two codes do not have to be ex- 
actly aligned to train the CP matrix. So fewer training 
data are needed. 

In addition, co-occurrence smoothing is text-indepen- 
dent; it is not necessary to speak any fixed training text 
for smoothing. While this might compromise some ac- 
curacy, it is more convenient and transparent to the user. 
Finally, our use of deleted interpolation is useful in avoid- 
ing oversmoothing. 

For context-independent HMM training, we divided the 
training data into two blocks during the final iteration of 
forward-backward, and then trained A's to interpolate: 1) 
HMM parameters, 2) co-occurrence smoothed HMM pa- 
rameters, and 3) uniform distribution. A A was used for 
each predetermined range of HMM parameter counts. 

Begin 

Begin 

Smoothtd 

A 
Begin 

Interpolated 

Middle 

Middle 

A 
Middle 

End 

End 

A 
End 

Fig. 2 .  The effect of co-occurrence smoothing and deleted interpolation. 
The top pdf's represent the cepstrum codebook of the unsmoothed model 
for lael (P). which was purposely undertrained. The second set of pdf's 
has been smoothed (SP). The third set represents the interpolated pdf 's 
(MP). 

C. Context-Dependent HMM Training 
Context-independent phone models assume that speech 

is produced as a sequence of concatenated phones, which 
are unaffected by context. While we may attempt to pro- 
duce speech in such a manner, our articulators cannot 
move instantaneously from one location for one phone to 
another for the next phone. Thus, in reality, phones are 
highly affected by the neighboring phonetic contexts. 

Context-independent models attempt to account for this 
effect by making the begin and end pdf's flatter, thereby 
increasing the weight for the stationary middle pdf. How- 
ever, useful information in the boundary pdf's is de- 
stroyed by combining all contexts together. 

A context-dependent phone model [3] is one that is de- 
pendent on the left and/or right neighboring phone. With 
N phones, there are potentially N 2  context-dependent 
phones if we model left or right context, and N 3  if we 
model both. We cannot hope to adequately train so many 
models. Fortunately, since we use phone models, we al- 
ways have the better trained, but less accurate, context- 
independent phone models. By interpolating the two, we 
will have models that are better trained than the context- 
dependent models, and more accurate than the context- 
independent ones. Again, we can use deleted interpola- 
tion to combine the two estimates. 
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In our implementation, we use right-context dependent 
phone modeling. For example, the sentence /si1 hh ix dx 
en si1 m . . . . . / would be transformed into /sil(hh) hh(ix) 
ix(dx) dx(en) en(si1) sil(m) . . . . . / ,  where x(y) desig- 
nates phone x with right context y. There were a total of 
1450 right-context-dependent models. Our choice of right- 
context dependent model was guided by the fact that most 
phonemes are affected by both left and right contexts, but 
prevocalic stops are affected more by the right context. 

The context-dependent HMM’s were initialized with 
statistics from the corresponding context-independent 
HMM’s. We ran two iterations of context-dependent for- 
ward-backward training. During the last iteration, train- 
ing data were divided into two blocks, and context-inde- 
pendent and context-dependent counts were maintained 
for each block. Context-independent counts were ob- 
tained by adding together all corresponding right-context- 
dependent models of the phone. After these two itera- 
tions, deleted interpolation was used to interpolate: 1) 
right-context-dependent model parameters, 2) context-in- 
dependent model parameters, 3) co-occurrence smoothed 
context-dependent model parameters, and 4) a uniform 
distribution. These interpolated context-dependent models 
were then used for recognition. 

D. HMM Recognition 

Recognition is carried out by a Viterbi search [21] in a 
large HMM. For context-independent phone recognition, 
an initial and a final state are created. The initial state is 
connected with null arcs to the initial state of each pho- 
netic HMM, and null arcs connect the final state of each 
phonetic HMM to the final state. The final state is also 
connected to the initial state. This HMM is illustrated in 
Fig. 3(a). 

For context-dependent phone models, each right-con- 
text-dependent model is only connected to successors that 
correspond to the appropriate right phone context. How- 
ever, some legal right contexts are not covered in the 
training data, and no corresponding right-context model 
was created. Therefore, for all unobserved right contexts, 
we connect the context-independent models to them. As 
a result, the network has one and only one phone-level 
path for any sequences of phones. This HMM is illus- 
trated in Fig. 3(b). 

The Viterbi search finds the optimal state sequence in 
this large HMM. At each time frame, the data structures 
are updated by finding the path with the highest probabil- 
ity to each state at this time. When the entire sentence has 
been consumed, a backtrace recovers the state sequence, 
which uniquely identifies the recognized phone sequence. 
Since the number of states is moderate, a full search is 
possible. 

The HMM’s were trained to maximize 
P ( Observations I Model ), while in recognition we need 

Fig. 3.  HMM’s used for context-independent (a) and right-context-depen- 
dent phone recognition (b). For right-context-dependent phone recogni- 
tion, /X/  (U) designates phone /X/ in the right context of /Y/.  

P ( Model 1 Observations ) . By Bayes’ rule, 

P (Model 1 Observation ) 

P( Observations 1 Model ) * P( Model ) 
P ( Observation ) . (4) - - 

Since the Observation is given, P ( Observation ) is a con- 
stant, and only the numerator need be evaluated. To eval- 
uate the numerator, we need P(ModeZ), or a language 
model, in recognition. This probability would be multi- 
plied by the acoustic probability every time a phone tran- 
sition occurs. In this study, we use a bigram phone lan- 
guage model that estimates the probability of a phone 
given the previous phone. This bigram was estimated from 
the same TIMIT training set. This is the same language 
model used by [3]. 

IV. RESULTS AND DISCUSSION 
A .  Phone Recognition Results 

We tested our phone recognizer on the TIMIT database. 
As described in Section 11, we used 18 sets (2830 sen- 
tences by 357 speakers) to train our HMM’s, and one set 
(TID7) (160 sentences by 20 speakers) to test our system. 
Our phone recognition results are shown in Table 11. With 
context-independent phone modeling, out of a total of 
6061 phones, 3883 were correctly identified for a phone 
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Bigram 
Unigram 

None 

TABLE I1 

CONTEXT-DEPENDEVT MODELS 
PHONE RECOGNITION RESULTS WITH CONTEXT-INDEPENDENT A N D  

I 

64.07% 73.80% 
60.91% 70.38% 
58.77% 69.51% 

recognition accuracy of 64.07 percent. With right-con- 
text-dependent phone modeling, 4473 were correctly rec- 
ognized, increasing the recognition accuracy to 73.80 
percent. The number of correct, substituted, inserted, and 
deleted phones are computed by a DP match between the 
correct phone string and the recognized phone string. Our 
DP algorithm considers substitutions and deletions as er- 
rors, and tries to minimize the number of errors. Substi- 
tutions within the following sets are not counted as errors: 
{sil, cl, vcl, epi}, {el, l}, {en, n}, {sh, zh}, {ao, aa}, 
{ih, ix}, {ah, ax}. Recognition rates for the four broad 
classes (sonorant, stop, fricative, and closure) are re- 
ported in Table 111. For these experiments, a bigram 
phone-language model is used, insertions are not counted 
as errors, and are held to 10-12 percent by appropriately 
weighing the language model and acoustic model proba- 
bilities. These conditions are identical to that used by 
Schwartz et al. [3]. 

B. Additional Experiments 
1) The Phone Language Model: One question that can 

be raised is the validity of using a bigram language model. 
We believe that for some comparisons, it is certainly 
valid. For example, since Schwartz et al. [3] used exactly 
the same model for speaker-dependent recognition, that 
comparison is clearly valid. We believe the bigram model 
is also fair when comparing against expert spectrogram 
readers, because they have far more knowledge about the 
likelihood of various combinations of phonetic events than 
bigrams. Also, they may subconsciously use their lexical 
knowledge in spite of their attempt to suppress it. 

On the other hand, systems that use Bayesian classifi- 
cation implicitly assume the a priori probabilities of the 
phones, which is the same as a unigram model. Some 
other systems might use no language model at all, or the 
zero-gram model. In order to validate these comparisons, 
we ran our system with bigram, unigram, and zero-gram 
language models, and present our results in Table IV. As 
expected, the use of simpler language models led to some 
degradations. 

2) Utility of Additional Features and Codebooks: In 
order to evaluate the utility and to justify the overhead of 
multiple codebooks and additional features, we ran a set 
of experiments where we used various combinations of 
the features with varying numbers of codebooks. Table V 
shows the results for context-independent phone model- 
ing. To use multiple feature sets in a codebook, interset 
distances are computed and combined using a linear com- 

TABLE 111 
PHONE RECOGNITION RESULTS BY BROAD PHONE CLASS 

Fricative 

TABLE IV 
PHONE RECOGNITION RESULTS WITH DIFFERENT PHONE LANGUAGE MODELS 

I Laneuaee Model I Context-Indewndent I Context-Dependent 1 
I - -  I RecomitionRate I RecoenitionRate I 

TABLE V 

MODELS, A N D  VARIOUS COMBINATIONS OF FLATURES A N D  N U M B E R  OF 
COIEBOOKS 

PHONE RECOGNITION RESULTS U S I N G  CONTEXT-INDEPENIIFWT PHONE 

bination [ 131. The weights in the linear combination were 
optimized from earlier experiments using a different da- 
tabase. The weights used for cepstrum, differenced cep- 
strum, differenced power, and power are: 1, 0.8, 0.01, 
and 0.05, respectively. 

We find that using only one set of the features in one 
codebook produced poor results. As expected, power gave 
much worse results than cepstrum or differenced cepstrum 
coefficients. Linearly combining all three sets of a fea- 
tures in one codebook [22], [ 131 led to a much better re- 
sult. However, equivalent results could be obtained by 
discarding a feature set and adding a codebook, and much 
better results can be obtained by using all three sets of 
features in three individual codebooks. This illustrates the 
utility of the additional features, as well as the additional 
codebooks. 

3) Utility of CO-Occurrence Smoothing: All of the 
above results were obtained with co-occurrence smooth- 
ing and deleted interpolation. We also tested our recog- 
nizer with no smoothing, and with floor smoothing (re- 
placing all probabilities smaller than the floor with the 
floor). We used context-independent phone models for this 
experiment. We found that with 2830 training sentences, 
the results were not significantly different. This is because 
the context-independent HMM’s were very well trained, 
and did not require smoothing. To test whether co-occur- 
rence smoothing would help when the amount of training 
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data is inadequate, we ran a set of experiments where we 
reduced the amount of training data. The context-inde- 
pendent phone recognition results are shown in Fig. 4 .  
This illustrates that when we have insufficient training 
data, smoothing can result in dramatic improvements. 
Also, we see that co-occurrence smoothing is signifi- 
cantly better than floor smoothing. For example, the re- 
sults from co-occurrence smoothing on two speakers is 
equivalent to floor smoothing on five or no smoothing on 
15. 

C. Discussion 

Without using lexical or higher level knowledge, expert 
spectrogram readers could recognize phones from contin- 
uous speech with an accuracy of 69 percent [ l l ] .  Our 
HMM recognizer is already beyond that level of perfor- 
mance. This suggests that any approach that solely emu- 
lates spectrogram reading is unlikely to produce better re- 
sults than those presented here. This is not to say that 
knowledge engineering approaches cannot do better, be- 
cause the expert spectrogram readers evaluated are not as 
good as Zue [23], and because spectrogram reading is only 
one of many kinds of human perceptual and speech 
knowledge. 

Comparison against other speaker-independent recog- 
nizers is more difficult because of the different databases, 
training data, phone classes, and additional information 
used. For example, vowel recognition is considerably 
harder than phone recognition. The use of hand segmen- 
tation eliminates the possibility of deletions and inser- 
tions, and thereby increases recognition accuracy. It was 
precisely because of this lack of uniformity that we be- 
lieve our benchmark result would be useful. With this in 
mind, we now present the results of several other systems. 

The ANGEL Acoustic-Phonetic Group at CMU has 
been working on speaker-independent phone recognition 
for several years. Their earlier results can be found in 
[24]. The current recognition accuracy has been im- 
proved. On the same test set using a unigram phone lan- 
guage model, the ANGEL System achieved an accuracy 
of 55 percent [25]. 

Nakagawa [26] applied statistical pattern classification 
and dynamic time warp to speaker-independent phone 
recognition. He reported 5 1 and 56 percent with these two 
approaches for 7 vowels, 71 and 74 percent for 9 frica- 
tives, and 57 and 55 percent for 9 stops and nasals. For 
this experiment, hand segmentation was used, and differ- 
ent classes were evaluated separately so that no between- 
class confusions could occur. No language model was 
used in this task. 

Leung and Zue [27] used artificial neural networks for 
the recognition of 16 vowels, and reported 54 percent for 
context-independent recognition, and 67 percent for con- 
text-dependent. In this experiment, hand segmentation 
was used for training and testing. The correct context was 
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Fig. 4. Phone recognition results with context-independent models, using 
different number of training speakers and smoothing algorithms. 

provided for both training and recognition using context- 
dependent networks. 

Another interesting comparison is BBN's speaker-de- 
pendent phone recognizer [3]. They reported phone rec- 
ognition rates of 61 and 79 percent for one very good 
speaker using context-independent and left-context-de- 
pendent models, respectively [3]. Our results for speaker- 
independent phone recognition are not far from the BBN 
speaker-dependent results. This was made possible by 
several factors: 1) we benefited from many more training 
data that are available for speaker-independent tasks, 2) 
differential and power information are very useful for 
speaker-independent recognition, and 3) the use of mul- 
.tiple codebooks was a good way to combine multiple fea- 
ture sets. With context-independent phone models, our 
results are actually significantly better. However, when 
context-dependent models were added, our improvement 
was much smaller. One possible explanation is our use of 
differential parameters with context-independent models, 
which already accounted for some contextual variations 
by emphasizing stationary portions of phones. 

In spite of the high accuracy we achieved, we see many 
areas where we might get further improvements: 1) in- 
crease the amount of training, 2) modeling of left and right 
context [3], 3) use of continuous parameters [28], [5], 4) 
use of maximum mutual information estimation [28], and 
5) incorporation of additional knowledge sources, such as 
duration, or the output of a knowledge-based phone de- 
coder. However, having demonstrated the feasibility of 
speaker-independent phone recognition, our future work 
will focus on the creation of a large-vocabulary speaker- 
independent continuous speech recognition system based 
on the methods used in this study. 

V.  CONCLUSION 
In this paper, we extended the currently popular hidden 

Markov modeling technique to speaker-independent phone 
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recognizer. This is the first time that HMM has been ap- 
plied to this task. Using multiple codebooks of LPC-de- 
rived parameters, discrete HMM, and Viterbi decoding, 
we obtained a 73.80 percent speaker-independent phone 
recognition accuracy in continuous speech. Moreover, by 
using a novel smoothing technique, co-occurrence 
smoothing, we were able to get very respectable results 
from just a few training speakers. Our results are the best 
reported thus far on this database. 

We used the TIMIT database for evaluating our recog- 
nizer. This allows other researchers to evaluate their tech- 
niques on the same training and testing data. We believe 
this benchmark result will prove useful to other research- 
ers, especially those using knowledge based approaches. 

We began this study with the hope of building a suc- 
cessful phone recognizer that could provide the basis for 
a speaker-independent continuous speech recognizer. We 
have shown good recognition results can be obtained for 
speaker-independent phone recognition, and are now 
working to extend this work to a large-vocabulary speaker- 
independent continuous speech recognition system [ 151. 
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